Continuous Non-Archimedean and p-adic Welch Bounds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deconstructing the Welch Equation Using $p$-adic Methods

The Welch map x → g is similar to the discrete exponential map x → gx, which is used in many cryptographic applications including the ElGamal signature scheme. This paper analyzes the number of solutions to the Welch equation: g ≡ x (mod pe) where p is a prime and g is a unit modulo p, and looks at other patterns of the equation that could possibly be exploited in a similar cryptographic system...

متن کامل

Analytic vectors in continuous p-adic representations

Given a compact p-adic Lie group G over a finite unramified extension L/Qp let GL/Qp be the product over all Galois conjugates of G. We construct an exact and faithful functor from admissible G-Banach space representations to admissible locally L-analytic GL/Qp -representations that coincides with passage to analytic vectors in case L = Qp. On the other hand, we study the functor ”passage to an...

متن کامل

P-adic Spaces of Continuous Functions II

Necessary and sufficient conditions are given so that the space C(X, E) of all continuous functions from a zero-dimensional topological space X to a nonArchimedean locally convex space E, equipped with the topology of uniform convergence on the compact subsets of X, to be polarly absolutely quasi-barrelled, polarly אo-barrelled, polarly `∞-barrelled or polarly co-barrelled. Also, tensor product...

متن کامل

p-adic Shearlets

The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the  $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.

متن کامل

Geometry of the Welch Bounds

A geometric perspective is used to derive the entire family of Welch bounds. This perspective unifies a number of observations that have been made regarding tightness of the bounds and their connections to symmetric k-tensors, tight frames, homogeneous polynomials, and tdesigns. Index Terms – Frames, Grammian, Homogeneous polynomials, Symmetric tensors, t-designs, Welch bounds

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Social Science Research Network

سال: 2022

ISSN: ['1556-5068']

DOI: https://doi.org/10.2139/ssrn.4215416